北京28群【玩pc加拿大群】北京28微信群

px是什么_搜索算法的主要分类

时间:2019-07-15 11:08 来源:网络 作者:合浦123人才网

px是什么_搜索算法的主要分类

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索树。px是什么它的基本思想是:为了求得问题的解,先选择某一种可能情况向前(子结点)探索,在探索过程中,一旦发现原来的选择不符合要求,就回溯至父亲结点重新选择另一结点,继续向前探索,如此反复进行,直至求得最优解。深度优先搜索的实现方式可以采用递归或者栈来实现。

  由此可见,把通常问题转化为树的问题是至关重要的一步,完成了树的转换基本完成了问题求解。

  在很多情况下,我们已经找到了一组比较好的解。但是计算机仍然会义无返顾地去搜索比它更“劣”的其他解,搜索到后也只能回溯。为了避免出现这种情况,我们需要灵活地去定制回溯搜索的边界。

  在深度优先搜索的过程当中,往往有很多走不通的“死路”。假如我们把这些“死路”排除在外,不是可以节省很多的时间吗?打一个比方,前面有一个路径,别人已经提示:“这是死路,肯定不通”,而你的程序仍然很“执着”地要继续朝这个方向走,走到头来才发现,别人的提示是正确的。这样,浪费了很多的时间。针对这种情况,我们可以把“死路”给标记一下不走,就可以得到更高的搜索效率。

  我们知道,剪枝方法之所以能够优化程序的执行效率,正如前文所述,是因为它能够“剪去”搜索树中的一些“枝条”。然而,如果在剪枝的时候,将“长有”我们所需要的解的枝条也剪掉了,那么,一切优化也就都失去了意义。所以,对剪枝的第一个要求就是正确性,即必须保证不丢失正确的结果,这是剪枝优化的前提。

  为了满足这个原则,我们就应当利用“必要条件”来进行剪枝判断。也就是说,通过解所必须具备的特征、必须满足的条件等方面来考察待判断的枝条能否被剪枝。这样,就可以保证所剪掉的枝条一定不是正解所在的枝条。当然,由必要条件的定义,我们知道,没有被剪枝不意味着一定可以得到正解(否则,也就不必搜索了)。

  (2)准确性:在保证第一条原则的情况下,尽可能的剪去更多不包含最优答案的枝条;

  在保证了正确性的基础上,对剪枝判断的第二个要求就是准确性,即能够尽可能多的剪去不能通向正解的枝条。剪枝方法只有在具有了较高的准确性的时候,才能真正收到优化的效果。因此,准确性可以说是剪枝优化的生命。

  当然,为了提高剪枝判断的准确性,我们就必须对题目的特点进行全面而细致的分析,力求发现题目的本质,从而设计出优秀的剪枝判断方案。

  一般说来,设计好剪枝判断方法之后,我们对搜索树的每个枝条都要执行一次判断操作。然而,由于是利用出解的“必要条件”进行判断,所以,必然有很多不含正解的枝条没有被剪枝。这些情况下的剪枝判断操作,对于程序的效率的提高无疑是具有副作用的。为了尽量减少剪枝判断的副作用,我们除了要下功夫改善判断的准确性外,经常还需要提高判断操作本身的时间效率。

  然而这就带来了一个矛盾:我们为了加强优化的效果,就必须提高剪枝判断的准确性,因此,常常不得不提高判断操作的复杂度,也就同时降低了剪枝判断的时间效率;但是,如果剪枝判断的时间消耗过多,就有可能减小、甚至完全抵消提高判断准确性所能带来的优化效果,这恐怕也是得不偿失。很多情况下,能否较好的解决这个矛盾,往往成为搜索算法优化的关键。 类似树的按层遍历,其过程为:首先访问初始点Vi,并将其标记为已访问过,接着访问Vi的所有未被访问过可到达的邻接点Vi1、Vi2……Vit,并均标记为已访问过,然后再按照Vi1、Vi2……Vit的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依此类推,直到图中所有和初始点Vi有路径相通的顶点都被访问过为止。

  主要区别 遍历方式 深度优先搜索遍历 广度优先搜索遍历 所用数据结构 栈 队列 一般优化 最优性剪枝


你从哪里找到px是什么_搜索算法的主要分类文章。
你对px是什么_搜索算法的主要分类有什么评价。
在本站,px是什么_搜索算法的主要分类有多少人看过此文章。
如果你对px是什么_搜索算法的主要分类文章有兴趣,请分享人你身边的朋友。

  关注 合浦123人才网的一些事 百度搜索,"合浦123人才网" 即可在找到精彩内容。

  在百度查找中搜索:本站域名 快速找到。

围观: 9999次 | 责任编辑:合浦123

回到顶部
describe